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The fluid is assumed to be inviscid and to be conflned within two parallel planes, 
each perpendicular to the axis of rotation. A sphere is set moving, relative to the 
rotating fluid, in a straight line with uniform velocity and the temporal develop- 
ment of the flow structure examined. It is found that ultimately the flow has 
different properties inside and outside the cylinder V, circumscribing the sphere 
and having its generators parallel to the axis of rotation. Inside V the fluid 
moves with the sphere as if solid; in early experiments of Taylor (1923) this 
phenomenon was observed. Outside %? the motion is a two-dimensional potential 
flow past ‘Z as if it  were solid. Then the asymmetry observed by Taylor and pre- 
dicted in an earlier theory of the author for an unbounded fluid (1953) is not borne 
out. A partial explanation is offered. 

1. Introduction 
The experiments carried out by Taylor (1923) on the motion of bodies through 

rotating fluids have proved a source of interest to many theoretical workers. In  
one of them, with which we shall be particularly concerned in this paper, the 
fluid rotated about a vertical axis with angular velocity SZ and a short stubby 
cylinder was caused to move in a horizontal plane in such a way that, relative to 
the rotating fluid, it moved in a straight line with uniform velocity U. Taking a 
to be a characteristic length of the cylinder he found that, when UlQa < 1 the 
induced motion of the fluid relative to the rotating axis was cylindrical, i.e. the 
same in all horizontal planes, and markedly different inside and outside the 
cylinder %‘, circumscribing the stubby cylinder and having its generators vertical. 
Inside $9 the fluid was a t  rest relative to the body, while outside it flowed, asym- 
metrically, past the cylinder V as if it were solid. His experiments have recently 
been repeated by Hide & Ibbetson (1966), who confirm the main details of the 
motion but who find a weak flow (i.e. < U )  through ‘Z and a flow outside V which is 
apparently a little more symmetric than that observed by Taylor. They ascribe 
the weak flow inside %? to viscous effects. 

The cylindrical aspect of the motion can be explained by means of the Taylor- 
Proudman theorem (Proudman 1916) but no further progress is possible on the 
basis of the steady equations of inviscid flow. Following on a suggestion of 
Taylor, Grace (1927) examined the solution of the unsteady inviscid equations 
in the hope of deducing a steady solution in the limit as !&-too. In  this investi- 
gation the short stubby cylinder was replaced by a sphere and the region occu- 
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pied by the fluid was unbounded in all directions. His solution was completed by 
Stewartson (1953), who confirmed Grace’s conjecture that the solution became 
steady almost everywhere as Qt -+ co. The principal properties of this flow are that 
outside %‘, defined in an equivalent way to the earlier one, the motion is clearly 
asymmetric and cylindrical, and reconcilable to the observations of Taylor. How- 
ever, there is a flux of fluid across %, and inside % the streamlines are arcs of 
circles on spheres inscribed in %‘. The disagreement with Taylor’s observations in 
% is not perhaps surprising as in the experiment the fluid was bounded by a hori- 
zontal lid so that the theoretical solution violated the boundary condition there. 

An alternative theoretical attack was proposed by Jacobs (1964). Instead of 
studying the unsteady inviscid equations he considered the steady viscous equa- 
tions assuming in addition that R = Qa2/v l ,  where v is the kinematic viscosity. 
He argued that the non-uniqueness in the solution of the steady inviscid equations 
is removed by the boundary layers on the two horizontal walls of the container 
and on the body, together with the shear layer at  59. A unique solution is obtained 
in which the fluid inside % moves with the body as if solid, while outside % the 
motion is in planes perpendicular to the axis of rotation and irrotational. Agree- 
ment with Taylor’s observations inside is thus found but the asymmetry outside 
is lost. Jacobs argues and Carrier (1966) supports him that his approach is more 
meaningful than the unsteady one, the order of limits t -+ m, v -+ 0 being preferred 
to v-fo, t - tm.  

Quite apart from the intrinsic difficulty in his solution for the shear layer at 
%, which has been discussed elsewhere (Stewartson 1966), Jacobs’s strong prefer- 
encefor his limit sequence is not convincing. In  the view of the present author both 
limit sequences are useful and may be regarded as complementary, especially 
since they lead, as we shall see, to the same flow pattern for the same geometry. 

Formally the viscous approach suffers from the disadvantage that it is only 
valid if 

Jacobs arrived a t  this condition (apart from a misprint) by considering the ‘non- 
linear and Coriolis accelerations in the Ekman layer on the. . . obstacle’. Another 
way to arrive at the range of validity of this approach is to argue that viscous 
forces can only be expected to be significant if the reaction time of the Ekman 
boundary layers on the horizontal walls to changes in the flow outside them is 
much less than the time it takes fluid particles to  move into and out of the zone of 
influence of the body. The first time-scale is the spin-up time-scale 

found by Greenspan & Howard (1963), where 2h is the distance between the hori- 
zontal walls of the container, and the condition is therefore 

which is equivalent to (1.1). This condition is so restrictive that an experimental 
test of his theory is a formidable task. 
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An obvious difficulty in comparing the unsteady inviscid solution with experi- 
ment is that the streamlines inside %lie on spheres, which contradicts the normal 
experimental situation in which the fluid is bounded by planes. In  other problems 
when this occurs it is possible to reconcile theory and experiment by taking the 
planes far enough apart but here no such reconciliation is possible because of the 
cylindrical character ofthe flow. Henceit isnot sufficient,froma theoretical stand- 
point, to assume the fluid is unbounded and instead the normal velocity must 
be set equal to zero on each of the bounding planes assumed a distance 2h apart. 

In  this paper we shall investigate the consequences of supposing that v = 0 
and show that as t -+ 00 the ultimate Aow pattern is identical with that found by 
Jacobs, but subject only to the weaker restriction U/sZa 4 1. This agreement is 
gratifying and indicates the complementary nature of the two approaches. It is 
true that the range of validity claimed for the unsteady approach is greater 
than that claimed for the viscous approach. It may be that the arguments lead- 
ing to (1.1) and (1.2) are unduly pessimistic and the argument of one referee is 
the relevant one to use. He writes: ‘there is no convincing argument why the 
right-hand side of (1.2) should represent a time-scale for the generation of rela- 
tive vorticity due to the presence of the cylinder. There is no reason, provided 
that the Taylor column forms, why its presence should stretch vortex lines or 
act in any way to alter the absolute vorticity component parallel to the gener- 
ators; certainly not on a time-scale alU’. Attention is largely confined to spheri- 
cal bodies in the paper, but the method is actually applicable to any smooth body 
and any permissible value of h. The ultimate flow is in horizontal planes, the 
fluid is at  relative rest inside the cylinder circumscribing the body and outside 
it is in irrotational motion. In  addition we shall offer a partial explanation of the 
observed asymmetry outside %. 

2. The statement of the problem 
Consider a fluid of constant density p rotating about a fixed vertical axis 1 with 

uniform angular velocity SL. At time t = 0 a sphere of radius a and centre 0 is 
set in motion in a plane at  right angles to 1 in such a way that, relative to axes 
rotating about 1 with angular velocity a, the centre 0 describes a straight line 
with constant speed U. Further UlasZ < 1, so that the motion induced by the 
sphere is slow relative to the rotating fluid, and viscous effects are neglected, the 
appropriate condition being the reverse of (1.2). Define a set of rectangular axes 
Oxyz rotating about 1 with angular velocity sZ such that Ox is parallel to 1 and Ox 
is in the direction of motion of the sphere. Let (u, v, w) be the components of the 
velocity of the fluid relative to these axes, p the pressure and let 

pP = p - gsZ2r;, 

where r, is the distance of the representative point from 1. Then the equations of 
motion may be reduced to (Stewartson 1953) 

(2.1) a% av aw 
ax ay az 

-f- = 0, -+-+- = 0, 

a% ap 
--2sZv+- = 0,  
at ax 

aw ap 
at a2 
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squares and products of u, v, w being neglected. The boundary condition at the 
sphere is that 

ux+vy+wz = Ux when x2+y2+z2 = u2 (t ’ 0) (2.2a) 

and at  time t = 0 + the motion is that classic irrotational flow for an ideal fluid 
found by setting Q = 0 in (2.1). We shall suppose here that the fluid is confined 
between two planes z = h but is otherwise unbounded. Thus an additional 
boundary condition is that 

w = 0 at z = ~ h ,  i.e. aP/& = 0 at z = fh. (2.2b) 

For a completely unbounded fluid the full solution of ( 2 . 2 ~ ~ )  is known (Stewart- 
son 1953) but has the disadvantage that in the limit 2Qt = 00, w+O as ZJCO. 

Hence, even if h/u is large, the condition (2.2) is certain to exert a significant effect 
on the solution for large enough t. No such difficulty is likely to arise in the x, y 
directions as the relative fluid velocities die out fairly quickly as x2 + y2 increases 
to infinity. 

The method of solution for an infinite mass of fluid is to take the Laplace 
transform of all dependent variables with respect to t and we shall adopt the 
same procedure here when (2.2b) has to be satisfied. Denoting the parameter of 
the transform by s and the transform by a bar so that, for example, 

U ( X ,  y,z;s)  = e-%(x, y, z, t) dt, (2.3) 

Po being the impulsive pressure at  t = 0 and 6(t)  the Dirac delta function. 
The earlier work indicated, quite clearly, that, except on the sphere and on the 

axis Ox, the ultimate motion is determined by the behaviour of the barred quanti- 
ties in (2.4) as s --f 0. I n  these exceptional regions contributions also arose from 
poles on the imaginary axis of s such that Is1 < 2Q. Since these regions are of zero 
volume and the unsteady extra motions are essentially free oscillations we can 
expect that even a very small viscosity would dampen them out and in any case 
the motions are unmeasurable. Finally, they do not alter the form of the boun- 
dary conditions when s < Q and do not contribute to the force on the sphere. In 
the present problem we shall therefore disregard them and assume that the mo- 
tion at  large times is solely determined by the structure of the transforms as 
s+O. Further we shall focus interest on times t such that Qt 9 I ,  i.e. after many 
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revolutions of the fluid have taken place from the start of the sphere’s relative 
motion. Equivalently therefore s/Q < 1 and (2.4) reduces to 

and the boundary condition on the sphere to 

when x2 + y2 + x2 = a2. From the differential equation we can write 

where x = ar cos 8, y = ar sin 0, and 6 = sz/2Qa. 

In  terms of Q, 

and 

Since 2Q $ s (2.106) can be replaced by c = 0 and the first term of ( 2 . 1 0 ~ )  may 
be neglected. 

We are particularly interested, in this paper, in the solution when h/a $ 1 so 
that the diameter of the sphere is small compared with the distance between the 
top and base plates of the fluid container. When this condition is satisfied we see 
from (2.11) that the fluid is effectively infinite when H B 1, i.e. 2Qt < h/a, but 
that if H < 1, i.e. 2Qt B h/a, the horizontal boundary planes exert a decisive 
influence on the motion. In  the next two sections we shall consider these two 
temporal regions in more detail. 

3. Solution characteristics when 1 < 2Qt < h/a. 

sh 
versions (2.9)-(2.11) and we proceed by writing 

For this range of times we may neglect s in comparison with 2Q and take 
2Qa. The governing equation and boundary conditions are the simplified 

= WeieS(r, 0, (3.1) 

whence S satisfies 
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with boundary conditions 

(3.3) iX+J(I-r2)sgnt- = - r  when g =  0, r < 1 ;  

as 
-=  0 when t =  0, r > 1 and when t =  H (3.4) a t  

as 
at 

by symmetry, where H > 1. The solution in 0 < < H may formally be expressed 

where A(k)  is a function to  be found and J1 is a Bessel function. This solution 
satisfies the boundary condition a t  E = H automatically, can be extended into 
the region t < 0 by symmetry, and satisfies the conditions a t  6 = 0 if 

i ~ ~ ( k ) J l ( k r ) c o t h k H c Z k - ( 1 - r 2 ) *  1: kA(Ic) Jl(kr)dk = - r  ( r  < 1) .  (3.6b) 

The solution of this dual set of integral equations can be expressed, when H 9 1, 
as a series of Bessel functions. First take H = 03, when (3.6b) reduces to 

reference to Watson (1944) now shows that the appropriate solution of (3.6a), 
(3.7) is 

A(k)  = B($)4J&'c), 

for, on substituting into the left-hand sides we find that (3.6a) is automatically 
satisfied while (3.7) reduces to 

n-r 2r 
-Bi - ( l - r ) i - - - -B = - r .  
2 (1 -r2$ 

2 B = - -  
4-n-ri 

Hence 

and the corresponding values of S when t = 0 are 

if r > 1. (3.9) 
n-r 2r 

--- if r < 1 and 
4-n-ri 

It follows that when z is finite 

(3.10) 

with an equivalent result for r > 1. Thus for values oft satisfying 1 < 2Qt < h/a, 

and 16 +n2 

Pl = < - 2U~Tr(4x-n-y) if 
(16 + n2) s 

+... if x2+y2< a2 
~ L ~ U T ( ~ X  -my) p=-- 
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provided z/a N 1. These results agree with those obtained earlier from the inverse 
of the full solution. The previous method was more complicated, however, and 
the number of different body shapes that could be considered using it is severely 
restricted. Greater scope is allowed by the present method, since all three-dimen- 
sional bodies are reduced to equivalent disks. For example, if the body issym- 
metrical about the z-axis, the method developed by Collins (1961) in which S is 
expressed as an integral of sources distributed along the imaginary z-axis 
enables the evaluation of S to be reduced to the solution of an integral equation 
for the source function. We shall not pursue this point, however, because it is 
not germane to our main purpose of investigating the effect of the plane boun- 
daries. 

When H is large but not infinite the solution (3.8) may be generalized by ex- 
panding coth kH as a series of exponentials, 

co 
coth kH = 1 + 2 C e-2nkH 

n=l  
and re-writing (3.6 b)  as 

i / ? (k )J , (kr )dk-  (1 -r2)* 

m r m  

if r < 1. After further reference to Watson (1944) it may be seen that A(k)  can be 
written as a series of Bessel functions, viz: 

(3.13) 

where, to anticipate, B,, B, are independent of k, B, = O(1) and B, = O(H-5). 
On substituting into (3.12) and neglecting terms O(H--6) we find that 

where g(a) is the Riemann zeta function defined by 

In addition, if 0 < r < l,.$ = 0, 

Q = 9 

and, inverting the Laplace transform to find P, at finite values of x ,  

(3.14a) 

(3.14 b )  

(3.15) 

Thus as 2R atlh increases from very small values the cylindrical character of the 
motion is preserved but the asymmetry is slowly modified. An indication of how 
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this occurs is obtained from the force on the sphere due to the relative motion of 
the fluid past it. This has components (Fs, F,, 0),  where 

(3.16) 

the integrals being taken over the sphere. Hence 

2n2 
(3.18) 

The direction of the force on the sphere thus moves round towards the transverse 
or y direction and since the pressure term PI acts like a streamfunction this indi- 
cates that the flow is becoming more symmetrical. I n  the next section we shall 
see that when 2Qat/h & 1 the motion is entirely symmetric. 

4. The motion when 2Qat/h >> 1 
The solution of the dual integral equations (3.6) is not known for general 

values of H but it is possible to make some progress with the determination of S 
when H i s  small. Since S satisfies (3.2) it follows that, apart from the neighbour- 
hood of certain surfaces, we can expect ajar and a/ag to  be of the same order of 
magnitude. Hence, when H < 1, aS/aE will be small on 5 = 0 because it vanishes 
on $ = H .  The boundary conditions then reduce to 

by symmetry while 

if r < 1 , t  = 0. A formal solution of (3.2) can now be written down in which S = i r  
f o r O < [ < H , O < r <  l a n d  

aS/aE= 0 a t  5 = H andat  E =  0, r > 1 (4.1) 
S = i r  (4.2) 

S = i / r ,  r > 1, 0 < 5 < H ,  (4.3) 
the arbitrary constant in r > 1 being fixed by requiring S to be continuous at 
r = 1.t Although (4.2)) (4.3) is an exact solution of (3.2) almost everywhere (for 
all H > 0 )  it has a discontinuous normal derivative a t  r = 1 which it must be 
possible to smooth out in an arbitrarily thin ‘shear layer’ before the solution 
can be accepted as relevant to our problem. We shall now show this is possible as 
H -+ 0 and for this purpose we consider the neighbourhood of the cylinder r = 1 , 
writing 

It is supposed here that 0 < 7 < 1 and that although c may become large in the 
region of interest H c  remains small. In  fact it  will appear that the region where 

-f The reader is referred to the footnote on p. 367 for the consequences of a discontinuity 
i n S a t r  = 1. 

E = HT, r = l+Hc, S = ir+HT(cr,T). (4.4) 
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(a1 N H-) is of particular importance for determining the properties of T ,  but 
the criterion IvHI < 1 is still satisfied when H < 1. The equation satisfied by T 

(4-5) 
a2T a2T reduces to 
- + - - = I  a+ a72  

and the boundary conditions to 

(4.6a) 
aT 
- = O  at 7 = 1  andat  7 = 0  for c > O ,  
a7 

i ~ + ( - - )  20. JaT - 0  at 7 = 0 ,  a < ~ ,  
H x- (4.6b) 

T-tO as cr-+-co and T+-2i+C as ( ~ - + + c o ,  ( 4 . 6 ~ )  

where C is independent of (T and has to be found. It turns out that ICl 9 1 [see 
(4.19) below] , that 1 TI increases from zero to a value approximately equal to I CI 
as (T increases from - co to values O(H-*) and that subsequently the variation of 
I TI is relatively small so long as la[ = O( 1). 

aT We observe that if 
- = f ( 4  (4-7) 
a7 

when (T < 0, and 7 = 0, then by integrating (4.5) with respect to 7 from 0 to 1 

= 0 ((T > 0) 
aa2 =Ad (g < 0); 
-"sl Td7 

whence, on integrating with respect to (T from - co to co and using the boundary 
condition ( 4 . 6 ~ ) ~  SY, f(a)d(T= - 2 i .  (4.8) 

Now take 0. negative but finite so that T w C. It then follows from (4.6b) that 

when - 0. is large but still finite the appropriate form for T is a quadratic in 7 
whose coefficients are functions of (T, the other terms in the solutions being either 
exponentially small or algebraic and negligible. Thus 

T = - y q a ( 2 F T . ) + c + . . . .  2 -2a (4.10) 

This form for T does not formally satisfy (4.5), the leading error term needing an 
extra term -+iCa2(H/ - 2cr)* in (4.10) to cancel it. In  confirmation of the remark 
just made this new term is algebraic and negligible when (T is finite but clearly can 
no longer be neglected when ] ( T I  N H-4 as it is then of the same order of magnitude 
as C .  The appropriate form for T is then suggested by (4.10), which we generalize 
to 

and now we suppose that -(rH* N 1. The form of the nth term of the series in 
T(a, 7) = T0(g) + $T,((T) (27 - 7') + &TZ(g) (87 - 4~~ + + . . . (4.11) 
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(4.11) is Tfi-1(a)fn-1(7), wherefL(7) = -,fn-l(~),fk( 1) = O,f,(O) = 0. Onsubstitut- 
ing into the differential equation (4.5) 

T,”(a) = Tl(g), T;(a) =%(a) etc., (4.12) 

while from the boundary condition (4.6b) 

i T , ( c ~ ) + ( ~ )  -2a  3i (Tl(a)++T2(u)+ ...) = 0. 
(4.13) 

Now from (4.12), To N H-8T1, T ,  N H*Tl, etc., and hence T, may safely be neg- 
lected in (4.13), which reduces to 

(4.14) 

It may now be confirmed that aH* is the relevant variable in To(a) and the 
boundary conditions require that To(a) + 0 as - aH# -+ co while To(a) -+ C as 
- aH* + 0. The solution of (4.14) satisfying these conditions is 

(4.15) 

where 7 = ,-hi( - 2aH*)* and Ai is the Airy function. It is noted that 

( -8) ! 3 4  1 1 
, Ai’(0) = - - 3Q( -Q) ! and Ai‘(7) N __ $e-%vt, 

2 Jn 
Ai(0)  = 211 277 

(4.16) as y+co. From (4.13) and (4.19) 

and from (4.8) 

so that 

(4.17) 

(4.18) 

It remains now to verify that when la1 N 1 the changes in T are small in com- 
parison with C. For then aT/ar is known on 7 = 0 being either zero or N HS. 
The determination of T is now a straightforward problem, the solution being 
expressed as a Fourier integral and it is easy to verify that the change in T is 
also - HQ and small in comparison with C. As a+ + co, T increases linearly with 
a but this does not affect our argument. It is concluded that when H 1 the 
discontinuity at  r = 1 in the normal derivative of the simple solution in (4.2), 
(4.3) can be smoothed out in a region of width N H-4 in a and therefore N H% in 
r.  The consequent change in T in this region N H-* and of S N H8. So far as we 
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can test therefore (4.2), (4.3) is the correct limit of S and H+O and, with confi- 
dence, we can now proceed with the interpretation of the solution in terms of t . t  
From (2.7) and (3.1) 

if 

as H --f 0,  so that 

and if x2+ y2 2 a2, 
2QUya2 
x2 + y2 +-- 

(4.19) 

(4.20) 

as 2Qatlh + co. Hence 

u+U, v+O, w-+O if x 2 + y 2 < a ,  
while 

U(x2 - y2) a2 V -+ 2Uxya2 w-+O if x2+y2 > a2 (4.21) 
(x2+y2)2 ' ( 2 2  + y2)2 ' u-f 

as 2Qat/h-+co. 

This solution indicates that in the ultimate motion the cylinder V of fluid 
circumscribing the sphere and having its generators parallel to the axis of rota- 
tion I is carried along with the sphere as if solid (i.e. no relative motion) while 
outside V the fluid describes a symmetric irrotational motion past it, the whole 
taking place in planes perpendicular to b .  It is noted that this solution is the same 
as that of Jacobs (1964), so that the limits v+O, t+co are, in some sense, com- 
mutative. Further for a real fluid the inviscid shear layer we have been discussing 
will ultimately be modified either by the action of viscosity or by the non- 
linear terms in the governing equations, or both, andwill presumably remain thin, 
but of finite thickness as Qt -+ co. The solution is capable of generalization to any 
finite body in a straightforward manner. There is no need to reproduce the argu- 
ment, it being sufficient to point out that the flow pattern described earlier in 
this paragraph is also applicable to the general body if %' is re-defined to circum- 
scribe the body and that the structure of the flow near %' is virtually identical 
with that for the sphere. A further generalization which one can make is to the 
case when h and a are of the same order. Now 0 3 is irrelevant and it is no longer 
legitimate to approximate the sphere boundary by E = 0 as is done in (3.3) and 
(4.6b) but we must take it to be 

t This result implies that 

rs1 = O(H*) ["I 
where [S] denotes the leap in S across the shear layer near r = 1. Hence a discontinuity 
in S of order one is unacceptable since the limit H + 0 must be associated with a singu- 
larity in 8S/8r as r + 1 + . 
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However, the solution in (4 .2) ,  (4 .3)  goes through as before when 2Q 9 s and so 
does the study of the neighbourhood of %? because the sphere boundary in terms 
of 7 is here 

7 M a , ( - 2 a H ) *  

and is small when N H-f.  It follows therefore that for all smooth bodies and 
all allowed values of h the final motion is the same-inside %? the fluid is at  rest 
relative to the body while outside it is in irrotational motion past %?. 

When the solution is compared with Taylor’s experiments the agreement is 
good so far as the motion inside %? is concerned, for he too found that the fluid 
inside %?was carried along with the sphere as if solid. On the other hand the flow 
observed by Taylor outside %? was highly asymmetric, which is not confirmed 
here. It is noted, in parenthesis, that the flow pattern found in $ 3 ,  valid when 
1 < 2Qt < h/a is highly asymmetric outside $? and can be reconciled there with 
experiment. A possible explanation, or perhaps a mitigation, of the discrepancy 
between theory and experiment outside %? when 2aa t  B h may be found by 
studying the approach to the limit flow as 2Qatlh-tco. 

If r > 1 the major contribution to S arises from C, which essentially implies 
that outside the immediate neighbourhood of r = 1 

1 
r 

8 = - (  i + C H ) +  .... (4.22) 

Hence 
- sin8 + c cos (8- Qn) (4.23) r 

as 2Qatlh-t 00 where c is a constant. Thus the asymmetry decays only algebraic- 
ally. On the other hand, if r < 1, S = ir except with a distance N H3 of r = 1 
and the difference decays exponentially as ( 1  - r )  H-* increases. Formally 
therefore we must expect that P approaches its limiting value exponentially 
except near r = 1 although it has not been possible to show this rigorously. The 
transition region near C is, also formally, of thickness N (2Qat lh )a  on the inner 
side and of thickness N (2Qat/h)-l on the outer side. These results suggest that 
the asymmetry persists for a longer time outside ‘Z? than inside %?. 

To conclude the paper we compute the force on the sphere at  large times. 
Using (3.17) we have 

- ( - 2aH)b +...I 
+ H 2 S o  [SOW 

- -  47ra3U!2 1 ir3dr F - i P  = - 
S Z Y  

= -  4 n a 3 U n E + 2 ~ + . . .  S 1 
when H < 1. Thus 

when t is large: it is likely that the leading error term 
O(h/2Rat)%. 

(4.24) 

(4.25) 

in (4 .25)  is in fact 
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